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Communication Errors 

   
Introduction  
Implementations of memory, storage, and communication are not perfect.  Therefore, it is 

possible that when I store a number on a hard drive or send it over a network, a slightly different 

number is actually stored/received.  There are techniques to deal with this. 

 

Definition  An error detection (correction) code is a method of encoding data in so that if a 

certain number of errors has occurred during transmission, it can be detected (corrected). 

 

Definition  The hamming distance between two bit strings is the number of bits where they 

differ. 

 

Example  The hamming distance between 10010011 and 11100001 is 4 since 

these bit patterns differ in bits 2, 3, 4, and 7. 

 

Parity Check Code  
The simplest method of detecting errors is by using a parity bit.  To use a parity bit, one simply 

appends one additional bit (to the beginning or end—it doesn’t matter which as long as you are 

consistent) to a bit string so that the number of 1s in the string is odd (or even).  To detect an 

error you add the number of ‘1’ bits.  If it is not odd (even) you know an error has occurred.   

 

Example  The bit string 10010011 is encoded as 100100111 using an odd parity check code, and 

the bit string 11110001 is encoded as 111100010 using an odd parity check code. 

 

Question   

• How many errors can this method detect?  What happens if more errors occur? 

• How many errors can this method correct? 

 

Repetition Code 
 A repetition code encodes a bit string by appending k copies of the bit string.  This can be done 

by either copying the first bit k times, followed by the next bit k times, etc., or copying the entire 

message k times. 

  

Example If I use a repetition code with k = 3, I would encode the bit string 0010 as 

000000111000.   Alternatively, it could be encoded as 001000100010.  For our purposes we will 

use the first method that repeats each bit. 

 

Questions 

• How can I determine what string was sent?  

• What values of k make sense to use? 

• For a given value of k, how many errors can be detected?  

• For a given value of k, how many errors can be corrected? 

 

10010011 

11100001 
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Parity Check Matrix 

1001011 

0101101 

0010111 

 

Hamming Code  
We can use a Hamming Code to both detect and correct errors.  The table below gives a 

Hamming Code that encodes 4 bits into 7 bits.  We won’t give the details of how this is 

computed, but notice that each pair of code words has a Hamming distance of at least 3.  

Therefore if at most one bit is flipped, we can uniquely decode the word.   

 

We can use the parity check matrix (PCM) to determine which bit has an error (again, we won’t 

go into detail about why this works). 

1. Bitwise AND each row of the PCM with the string. 

2. Determine the parity of each of the bit strings from step 1. 

3. We now have a 3-bit string that gives us information about 

the error: 

a. If we get 000, there is no error.   

b. If we get anything else, the column of the PCM that 

matches the result is the column with the error. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Example Decode the string 1101011 1101010 0110101 using the parity check matrix.  

Example Encode the hexadecimal string FAB5 using the Hamming Code above. 

Example Encode “Meh.” in ASCII.  Then encode the result using each of the three methods 

above. 

 

Question Compare the three encoding methods.  Give advantages/disadvantages of each. 

A Hamming Code 

Letter String Code word 

0 0000 0000000 

1 0001 1110001 

2 0010 1010010 

3 0011 0100011 

4 0100 0110100 

5 0101 1000101 

6 0110 1100110 

7 0111 0010111 

8 1000 1101000 

9 1001 0011001 

A 1010 0111010 

B 1011 1001011 

C 1100 1011100 

D 1101 0101101 

E 1110 0001110 

 F 1111 1111111 

Example 

Code word: 0001100 

 

1001011 

AND 0001100 
→ 0001000 → 1 

0101101 

AND 0001100 
→ 0001100 → 0 

0010111 

AND 0001100 
→ 0000100 → 1 

 

       ↓ 

 0001100 

↓ 
0001110 

← 1001011 

  0101101 

  0010111 

 ↓ 

1110→E 

 
 

    


